Функции и свойства скелетных мышц

Автор: Пользователь скрыл имя, 20 Февраля 2012 в 18:32, реферат

Описание работы

Скелетная мускулатура является составной частью опорно-дви­гательного аппарата человека. При этом мышцы выполняют следу­ющие функции:

1) обеспечивают определенную позу тела человека;

2) перемещают тело в пространстве;

Работа содержит 1 файл

физИОЛОГИЯ МЫШЕЧНОЙ ТКАНИ.doc

— 119.00 Кб (Скачать)

 

 В изолированной мышце величина и скорость одиночного сокра­щения определяются рядом дополнительных факторов. Величина одиночного сокращения в первую очередь будет определяться числом двигательных единиц, участвующих в сокращении. Поскольку мыш­цы состоят из мышечных волокон с различным уровнем возбуди­мости, имеется определенная зависимость между величиной стимула и ответной реакцией. Увеличение силы сокращения возможно до определенного предела, после которого амплитуда сокращения ос­тается неизменной при увеличении амплитуды стимула. При этом все мышечные волокна, входящие в состав мышцы, принимают участие в сокращении.

 

Важность участия всех мышечных волокон в сокращении пока­зана при изучении зависимости скорости укорочения от величины нагрузки. График зависимости скорости сокращения от величины нагрузки приближается к гиперболе (рис. 2.24). Поскольку сила сокращения эквивалентна нагрузке, становится понятным, что мак­симальная сила, которая может быть развита мышцей, приходится на очень малые скорости. Штангист может «взять рекордный вес» только при медленных движениях. Напротив, быстрые движения возможны при слабонагруженных мышцах.

 

Изменение силы сокращения наблюдают при ритмической сти­муляции скелетных мышц.

 

На рис. 2.25 показаны варианты стимуляции мышцы двумя стимулами. Если второй стимул действует в период рефрактерности мышечного волокна, то он не вызовет повторного мышечного со­кращения (рис. 2.25, А). Если же второй стимул действует на мышцу после окончания периода расслабления, то вновь возникает одиноч­ное мышечное сокращение (рис. 2.25, Б).

 

При нанесении второго стимула в период укорочения или раз­вития мышечного напряжения происходит суммация двух следую­щих друг за другом сокращений и результирующий ответ по амп­литуде становится значительно выше, чем при одиночном стимуле; если мышечное волокно или мышцу стимулировать с такой частотой, что повторные стимулы будут приходиться на период укорочения, или развития напряжения, то происходит полная суммация единич­ных сокращений и развивается гладкий тетанус (рис. 2.25, В). Тетанус — сильное и длительное сокращение мышцы. Полагают, что в основе этого явления лежит повышение концентрации кальция внутри клетки, что позволяет осуществляться реакции взаимодействия актина и миозина и генерации мышечной силы поперечными мостиками достаточно длительное время. При уменьшении частоты стимуляции возможен вариант, когда повторный стимул наносят в период расслабления. В этом случае также возникнет суммация мышечных сокращений, однако будет наблюдаться характерное западение на кривой мышечного сокращения (рис. 2.25, Г) — неполная суммация, или зубчатый тетанус.

 

При тетанусе происходит суммация мышечных сокращений, в то время как ПД мышечных волокон не суммируются.

 

В естественных условиях одиночные сокращения скелетных мышц не встречаются. Происходит сложение, или суперпозиция, сокраще­ний отдельных нейромоторных единиц. При этом сила сокращения может увеличиваться как за счет изменения числа двигательных единиц, участвующих в сокращении, так и за счет изменения частоты импульсации мотонейронов. В случае увеличения частоты импульсации будет наблюдаться суммация сокращений отдельных двигательных единиц.

 

Одной из причин увеличения силы сокращения в естественных условиях является частота импульсов, генерируемых мотонейрона­ми. Второй причиной этого служат увеличение числа возбуждаю­щихся мотонейронов и синхронизация частоты их возбуждения. Рост числа мотонейронов соответствует увеличению количества дви­гательных единиц, участвующих в сокращении, а возрастание сте­пени синхронизации их возбуждения способствует увеличению ам­плитуды при суперпозиции максимального сокращения, развивае­мого каждой двигательной единицей в отдельности.

 

 Сила сокращения изолированной скелетной мышцы при прочих равных условиях зависит от исходной длины мышцы. Умеренное растяжение мышцы приводит к тому, что развиваемая ею сила возрастает по сравнению с силой, развиваемой нерастянутой мыш­цей. Происходит суммирование пассивного напряжения, обуслов­ленного наличием эластических компонентов мышцы, и активного сокращения. Максимальная сила сокращения достигается при раз­мере саркомера 2—2,2 мкм (рис. 2.26). Увеличение длины саркомера приводит к уменьшению силы сокращения, поскольку уменьшается область взаимного перекрытия актиновых и миозиновых нитей. При длине саркомера 2,9 мкм мышца может развивать силу, равную только 50% от максимально возможной.

 

В естественных условиях сила сокращения скелетных мышц при их растяжении, например при массаже, увеличивается вследствие работы гамма-эфферентов.

Работа и мощность мышцы

 

Поскольку основной задачей скелетной мускулатуры является совершение мышечной работы, в экспериментальной и клинической физиологии оценивают величину работы, которую совершает мыш­ца, и мощность, развиваемую ею при работе.

 

Согласно законам физики, работа есть энергия, затрачиваемая на перемещение тела с определенной силой на определенное рас­стояние: А = FS. Если сокращение мышцы совершается без нагрузки (в изотоническом режиме), то механическая работа равна нулю. Если при максимальной нагрузке не происходит укорочения мышцы (изометрический режим), то работа также равна нулю. В этом случае химическая энергия полностью переходит в тепловую.

 

Согласно закону средних нагрузок, мышца может совершать максимальную работу при нагрузках средней величины.

 

При сокращении скелетной мускулатуры в естественных условиях преимущественно в режиме изометрического сокращения, например при фиксированной позе, говорят о статической работе, при со­вершении движений — о динамической.

 

Сила сокращения и работа, совершаемая мышцей в единицу вре­мени (мощность), не остаются постоянными при статической и дина­мической работе. В результате продолжительной деятельности рабо­тоспособность скелетной мускулатуры понижается. Это явление назы­вается утомлением. При этом снижается сила сокращений, увеличиваются латентный период сокращения и период расслабления.

 

Статический режим работы более утомителен, чем динамический. Утомление изолированной скелетной мышцы обусловлено прежде всего тем, что в процессе совершения работы в мышечных волокнах накапливаются продукты процессов окисления — молочная и пировиноградная кислоты, которые снижают возможность генерирования ПД. Кроме того, нарушаются процессы ресинтеза АТФ и креатинфосфата, необходимых для энергообеспечения мышечного сокращения. В естественных условиях мышечное утомление при статической рабо­те в основном определяется неадекватным регионарным кровотоком. Если сила сокращения в изометрическом режиме составляет более 15% от максимально возможной, то возникает кислородное «голода­ние» и мышечное утомление прогрессивно нарастает.

 

В реальных условиях необходимо учитывать состояние ЦНС — снижение силы сокращений сопровождается уменьшением частоты импульсации нейронов, обусловленное как их прямым угнетением, так и механизмами центрального торможения. Еще в 1903 г. И. М. Сеченов показал, что восстановление работоспособности утомленных мышц одной руки значительно ускоряется при совершении работы другой рукой в период отдыха первой. В отличие от простого отдыха такой отдых называют активным.

 

Работоспособность скелетной мускулатуры и скорость развития утомления зависят от уровня умственной деятельности: высокий уро­вень умственного напряжения уменьшает мышечную выносливость.

Энергетика мышечного сокращения

 

В динамическом режиме работоспособность мышцы определяется скоростью расщепления и ресинтеза АТФ. При этом скорость рас­щепления АТФ может увеличиваться в 100 раз и более. Ресинтез АТФ может обеспечиваться за счет окислительного расщепления глюкозы. Действительно, при умеренных нагрузках ресинтез АТФ обеспечивается повышенным потреблением мышцами глюкозы и кислорода. Это сопровождается увеличением кровотока через мышцы примерно в 20 раз, увеличением минутного объема сердца и дыхания в 2—3 раза. У тренированных лиц (например, спортсмена) большую роль в обеспечении повышенной потребности организма в энергии играет повышение активности митохондриальных ферментов.

 

При максимальной физической нагрузке происходит дополнитель­ное расщепление глюкозы путем анаэробного гликолиза. Во время этих процессов ресинтез АТФ осуществляется в несколько раз быстрее и механическая работа, производимая мышцами также больше, чем при аэробном окислении. Предельное время для такого рода работы составляет около 30 с, после чего возникает накопление молочной кис­лоты, т. е. метаболический ацидоз, и развивается утомление.

 

Анаэробный гликолиз имеет место и в начале длительной фи­зической работы, пока не увеличится скорость окислительного фосфорилирования таким образом, чтобы ресинтез АТФ вновь сравнялся с его распадом. После метаболической перестройки спортсмен об­ретает как бы второе дыхание. Подробные схемы метаболических процессов приведены в руководствах по биохимии.

Теплообразование при мышечном сокращении

 

 Согласно первому закону термодинамики, общая энергия системы и ее окружения должна оставаться постоянной.

 

Скелетная мышца превращает химическую энергию в механиче­скую работу с выделением тепла. А. Хиллом было установлено, что все теплообразование можно разделить на несколько компонентов:

 

1.     Теплота активации — быстрое выделение тепла на ранних этапах мышечного сокращения, когда отсутствуют видимые призна­ки укорочения или развития напряжения. Теплообразование на этой стадии обусловлено выходом ионов Са2+  из триад и соединением их с тропонином.

 

2.     Теплота укорочения  —  выделение тепла  при  совершении работы, если речь идет не об изометрическом режиме. При этом, чем больше совершается механической работы, тем больше выде­ляется тепла.

 

3. Теплота расслабления — выделение тепла упругими элемен­тами мышцы при расслаблении. При этом выделение тепла не связано непосредственно с процессами метаболизма.

 

Как отмечалось ранее, нагрузка определяет скорость укорочения. Оказалось, что при большой скорости укорочения количество вы­деляющегося тепла мало, а при малой скорости велико, так как количество выделяющегося тепла пропорционально нагрузке (закон Хилла для изотонического режима сокращения).

Скелетно-мышечное взаимодействие

 

При совершении работы развиваемое мышцей усилие передается на внешний объект с помощью сухожилий, прикрепленных к костям скелета. В любом случае нагрузка преодолевается за счет вращения одной части скелета относительно другой вокруг оси вращения.

 

Передача мышечного сокращения на кости скелета происходит при участии сухожилий, которые обладают высокой эластичностью и растяжимостью. В случае сокращения мышцы происходит растя­жение сухожилий и кинетическая энергия, развиваемая мышцей, переходит в потенциальную энергию растянутого сухожилия. Эта энергия используется при таких формах движения как ходьба, бег, т. е. когда происходит отрыв пятки от поверхности земли.

 

Скорость и сила, с которой одна часть тела перемещается относительно другой, зависят от длины рычага, т. е. взаимного расположения точек прикрепления мышц и оси вращения, а также от длины, силы мышцы и величины нагрузки. В зависимости от функции, которую выполняет конкретная мышца, возможно пре­валирование скоростных или силовых качеств. Как уже указыва­лось в разделе 2.4.1.4, чем длиннее мышца, тем выше скорость ее   укорочения.   При   этом   большую   роль   играет  параллельное расположение мышечных волокон относительно друг друга. В этом случае физиологическое поперечное сечение соответствует геомет­рическому (рис. 2.27, А). Примером такой мышцы может служить портняжная мышца. Напротив, силовые характеристики выше у мышц с так называемым перистым расположением мышечных волокон. При таком расположении мышечных волокон физиоло­гическое поперечное сечение больше геометрического поперечного сечения (рис. 2.27, Б). Примером такой мышцы у человека может служить икроножная мышца.

 

У мышц веретенообразной формы, например у двуглавой мышцы плеча, геометрическое сечение совпадает с физиологическим только в средней части, в других областях физиологическое сечение больше геометрического, поэтому мышцы этого типа по своим характери­стикам занимают промежуточное место

 

При определении абсолютной силы различных мышц максималь­ное усилие, которое развивает мышца, делят на физиологическое по­перечное сечение. Абсолютная сила икроножной мышцы человека со­ставляет 5,9 кг/см , двуглавой мышцы плеча — 11,4 кг/см2 .

Оценка функционального состояния мышечной системы у человека

 

При оценке функционального состояния мышечной системы у человека используют различные методы.

 

Эргометрические методы. Эти методы используют для опреде­ления физической работоспособности. Человек совершает работу в определенных условиях и одновременно регистрируются величины выполняемой работы и различные физиологические параметры: ча­стота дыхания, пульс, артериальное давление, объем циркулирую­щей крови, величина регионарного кровотока, потребляемого О2, выдыхаемого СО2 и т.д. С помощью специальных устройств — велоэргометров или тредбанов (бегущая дорожка) — создается возможность дозировать нагрузку на организм человека.

 

Электромиографические методы. Эти методы исследования ске­летной мускулатуры человека нашли широкое применение в физи­ологической и клинической практике. В зависимости от задач ис­следования проводят регистрацию и анализ суммарной электромиограммы (ЭМГ) или потенциалов отдельных мышечных волокон. При регистрации суммарной ЭМГ чаще используют накожные элект­роды, при регистрации потенциалов отдельных мышечных воло­кон — многоканальные игольчатые электроды.

 

Преимуществом суммарной электромиографии произвольного усилия является неинвазивность исследования и, как правило, отсутствие электростимуляции мышц и нервов. На рис. 2.28 при­ведена ЭМГ мышцы в покое и при произвольном усилии. Коли­чественный анализ ЭМГ заключается в определении частот волн ЭМГ, проведении спектрального анализа, оценки средней, ампли­туды волн ЭМГ. Одним из распространенных методов анализа ЭМГ является ее интегрирование, поскольку известно, что величина интегрированной ЭМГ пропорциональна величине развивае­мого мышечного усилия.

 

Используя игольчатые электроды, можно регистрировать как суммарную ЭМГ, так и электрическую активность отдельных мы­шечных волокон. Регистрируемая при этом электрическая актив­ность в большей степени определяется расстоянием между отво­дящим электродом и мышечным волокном. Разработаны критерии оценки параметров отдельных потенциалов здорового и больного человека. На рис. 2.29 приведена запись потенциала двигательной единицы человека.

Информация о работе Функции и свойства скелетных мышц