Нитрификация. Возбудители. Химизм процесса. Значение работ С. Н. Виноградского. Положительная и отрицательная роль этого процесса в зем

Автор: Пользователь скрыл имя, 15 Января 2012 в 01:12, контрольная работа

Описание работы

Химизм разложения белковых веществ. Гниение — сложный, многоступенчатый биохимический процесс, характер которого и конечный результат зависят от строения и состава разлагаемых белков, условий процесса и видов вызывающих его микроорганизмов.

Работа содержит 1 файл

57.docx

— 75.51 Кб (Скачать)

57.Нитрификация. Возбудители. Химизм  процесса. Значение  работ С. Н. Виноградского.  Положительная и  отрицательная роль  этого процесса  в земледелии при  хранении навоза.

Химизм разложения белковых веществ. Гниение — сложный, многоступенчатый биохимический процесс, характер которого и конечный результат  зависят от строения и состава  разлагаемых белков, условий процесса и видов вызывающих его микроорганизмов. 
 
Белковые вещества не могут непосредственно поступать в клетки микроорганизмов, поэтому использовать белки могут только те из них, которые обладают протеолитическими ферментами экзопротеазами, выделяемыми клетками в окружающую среду. 
 
Процесс распада белков начинается с их гидролиза. Первичными продуктами гидролиза являются пептоны и пептиды. Они расщепляются до аминокислот, которые являются конечными продуктами гидролиза. 
 
Такие белки, как нуклеопротеиды, под действием гнилостных микробов расщепляются на белковый комплекс и нуклеиновые кислоты. Белки затем разлагаются аналогично тому, как описано выше, а нуклеиновые кислоты распадаются на фосфорную кислоту, углеводы и смесь азотсодержащих оснований. 
 
Образующиеся в процессе распада белков различные аминокислоты используются микроорганизмами или подвергаются ими дальнейшим изменениям, например дезаминированию, в результате чего образуются аммиакi и разнообразные органические соединения в соответствии с характером самих аминокислот и ферментов микроорганизмов. Процесс дезаминирования может происходить различными путями. Различают дезаминирование гидролитическое, окислительное и восстановительное. 
 
Гидролитическое дезаминирование сопровождается образованием оксикислот и аммиака. Если при этом происходит и декарбоксилирование аминокислоты, то образуются спирт, аммиак и углекислый газ: 
 
RCHNH2COOH + Н20 ~> RCHOHCOOH + NH3; 
 
RCHNH2COOH + H20 -+ RCH2OH + NH3 +CO2. 
 
При окислительном дезаминировании образуются кетокислоты и аммиак: 
 
RCHNH2COOH +1/2 О2 = RCOCOOH + NH3. 
 
При восстановительном дезаминировании образуются карбоновые кислоты и аммиак: 
 
RCHNH2COOH + 2H =RCH2COOH + NH3. 
 
Из приведенных уравнений видно, что среди продуктов разложения аминокислот в зависимости от строения их радикала (R) обнаруживаются различные органические кислоты и спирты. Так, при разложении аминокислот жирного ряда могут накапливаться муравьиная, уксусная, пропионовая, масляная и другие кислоты, пропиловый, бутиловый, амиловый и другие спирты. При разложении аминокислот ароматического ряда промежуточными продуктами являются характерные продукты гниения: фенол, крезол, скатол, индол — вещества, обладающие очень неприятным запахом. При распаде аминокислот, содержащих серу, получается сероводород или его производные — меркаптаны (например, метилмеркаптан CH3SH). Меркаптаны обладают запахом тухлых яиц, который ощущается даже при ничтожно малых их концентрациях. 
 
Возбудители гниения. 
 
Среди множества микроорганизмов, способных в той или иной мере разлагать белки, особое значение имеют микроорганизмы, которые вызывают глубокий распад белков — собственно гниение. Такие микроорганизмы принято называть гнилостными. Из них наибольшее значение имеют бактерии. Гнилостные бактерии могут быть спорообразующими и бесспоровыми, аэробными и анаэробными. Многие из них мезофилы, но есть холодоустойчивые и термостойкие. Большинство чувствительны к кислотности среды и повышенному содержанию в ней NaCl. Многие способны к сбраживанию углеводов. 
 
Наиболее распространенными и активными возбудителями гнилостных процессов являются следующие: Вас. subtilis (сенная палочка) и Вас. mesentericus (картофельная палочка) — аэробные, подвижные, спорообразующие бактерии  
 
Клетки сенной палочки объединяются в более или менее длинные цепочки. Споры этих бактерий отличаются высокой термоустойчивостью. Температурный оптимум развития сенной палочки 37—50° С, максимум роста — около 60° С. Температурный оптимум роста картофельной палочки 36—45°С, а максимум — около 50—55° С. При рН 4,5—5 развитие этих бактерий прекращается. Вас. mesentericus обладает более высокой амилоитической и протеолитической активностью, но менее энергично, чем Вас. subtilis, сбраживает сахара. 
 
Сенная и картофельная палочки помимо продуктов, богатых белками, портят пищу, содержащую углеводы (кондитерские изделия, сахарные сиропы и др.), поражают хлеб (преимущественно пшеничный), клубни картофеля. Вас. mesentericus вызывает побурение мякоти косточковых плодов (абрикосов, персиков). Оба вида широко распространены в природе и способны вырабатывать антибиотические вещества, подавляющие развитие многих болезнетворных и сапрофитных бактерий. 
 
Нитрификация 
 
Процесс последовательного окисления аммиака до азотистой и азотной кислот называется нитрификацией, а вызывающие его бактерии — нитрифицирующими. Сущность этого процесса была раскрыта и изучена С. Н. Виноградским. 
 
Работами С. Н. Виноградского установлено, что процесс нитрификации происходит в две фазы, каждая из которых обусловлена деятельностью специфических аэробных бактерий. Возбудители первой фазы — нитрозные бактерии — окисляют аммиак до солей азотистой кислоты (нитритов). Возбудители второй фазы — нитратные бактерии — окисляют соли азотистой кислоты в соли азотной кислоты (нитраты 
 
Процесс нитрификации представляет собой яркий пример метабиоза, когда одни микроорганизмы начинают развиваться после других на продуктах жизнедеятельности первых. 
 
Нитрифицирующие бактерии относятся к типичным хемосинтезирующим автотрофам; они очень чувствительны к наличию в среде органических соединений. Эти бактерии живут в почве, природных водах. 
 
Очень важное значение имеют нитрификаторы в сельском хозяйстве. Образующийся в почве при разложении белков аммиак, хотя и усваивается растениями в виде аммонийных солей, но лучшим источником азотистого питания для растений являются нитраты, которые и накапливаются в почве в результате деятельности нитрифицирующих бактерий. Часто эти бактерии встречаются в условиях, где жизнь на первый взгляд кажется невозможной, например на гранитах и голых скалах. Здесь они участвуют в выветривании горных пород благодаря разрушающему действию образуемой ими азотной кислоты. Развиваясь на кирпичных стенах зданий, нитрифицирующие бактерии могут разрушать кирпичную кладку. Немалая роль принадлежит им, по-видимому, и в разрушении подводных частей бетонных сооружений

1. Возникновение и  развитие микробиологии

Предмет и задачи микробиологии, ее место и роль в  современной биологии. Значение микроорганизмов  в природных процессах, в народном хозяйстве и здравоохранении.

История микробиологии. Открытие микроорганизмов. Значение работ  Л. Пастера, Р. Коха, С.Н. Виноградского, Д.И. Ивановского, М. Бейеринка, А. Клюйвера, А. Флеминга. Развитие отечественной микробиологии. Главные направления развития современной микробиологии. Основные методы микробиологических исследований.

2. Систематика микроорганизмов

Мир микроорганизмов, общие признаки и разнообразие. Прокариотные и эукариотные микроорганизмы, сходство и основные различия. Принципы классификации прокариотных и эукариотных микроорганизмов. Правила номенклатуры и идентификации. Методы классификации на основе определения последовательности 16S p РНК и ДНК-ДНК гибридизации. Применение нуклеиновых микрочипов для систематики микроорганизмов. Характеристика отдельных групп бактерий, архей и эукарий.

3. Морфология, строение  и развитие

Микроскопические  методы изучения микроорганизмов. Исследования живых и фиксированных объектов. Прокариотные микроорганизмы. Одноклеточные, многоклеточные бактерии, размеры и морфология бактерий. Строение, химический состав и функции отдельных компонентов клеток. Слизистые слои, S-слои, капсулы и чехлы. Строение клеточных стенок Грам- положительных и Грам- отрицательных бактерий. L-формы и микоплазмы. Жгутики и пили, расположение, организация, механизм действия. Движения скользящих форм. Реакции таксиса. Клеточная мембрана и внутриклеточные мембранные структуры. Ядерный аппарат, рибосомы. Газовые вакуоли, запасные вещества и другие внутриклеточные включения. Способы размножения, дифференцировка, эндоспоры и другие покоящиеся формы. Особенности состава и организация клеток архей.

Эукариоты. Морфология дрожжей, мицелиальных грибов, микроформ водорослей, простейших. Химический состав и функции отдельных компонентов клетки. Циклы развития и размножение.

4. Культивирование  и рост

Накопительные и  чистые культуры. Основные типы сред. Культивирование  аэробных и анаэробных микроорганизмов, метод Хангейта. Рост отдельных микроорганизмов и популяций (культур). Сбалансированный и несбалансированный рост. Основные параметры роста культур: время генерации, удельная скорость роста, выход биомассы, экономический коэффициент. Закономерности роста чистых культур при периодическом выращивании. Рост микроорганизмов при непрерывном культивировании. Синхронные культуры, способы получения и значение.

5. Действие физических  и химических факторов

Радиация, характер ее действия на микроорганизмы. Фотореактивация и темновая репарация. Рост микроорганизмов в зависимости от температуры. Психрофилы, мезофилы и термофилы. Механизмы, позволяющие микробам жить при экстремальных температурах. Барофилы. Устойчивость микроорганизмов к высушиванию. Рост микроорганизмов в зависимости от активности воды (а w). Особенности осмофилов и галофилов. Механизмы устойчивости к осмотическому стрессу. Отношение микроорганизмов к молекулярному кислороду: аэробы и анаэробы. Возможные причины ингибирующего действия кислородного стресса на микроорганизмы. Ацидозы, нейтрофилы и алкалифилы. Природа антимикробных веществ и области их применения. Мутагены, механизмы их действия и устойчивости к ним.

6. Питание

Основные биоэлементы  и микроэлементы, типы питания микроорганизмов. Фототрофия и хемотрофия, автотрофия и гетеротрофия, литотрофия и органотрофия. Сапрофиты и паразиты. Прототрофы и ауксотрофы. Ростовые вещества. Диффузия и транспорт. Использование микроорганизмами высокомолекулярных соединений и веществ, нерастворимых в воде. Эндо- и экзоцитоз у эукариот. Соединения углерода и азота, используемые микроорганизмами. Азотфиксация. Способность микроорганизмов использовать разные соединения серы и фосфора. Потребность в железе, магнии и других элементах.

7. Метаболизм

Энергетические  процессы. Способы обеспечения энергией. Фотосинтез и хемосинтез. Переносчики  электронов и электронтранспортные системы, их способности у разных микроорганизмов. Молочнокислое гомо- и гетероферментативное брожение, пропионовокислое, маслянокислое, ацетонбутиловое, спиртовое и другие брожения. Формы участия молекулярного кислорода в окислении разных субстратов. Полное и неполное окисление. Роль цикла трикарбоновых кислот и пентозофосфатного окислительного цикла. Краткая характеристика важнейших микроорганизмов, участвующих в аэробном окислении белков, углеводов, углеводородов и других многоуглеродных веществ. Микроорганизмы - метилотрофы. Светящиеся бактерии. Окисление неорганических соединений: группы хемолитотрофных бактерий и осуществляемые ими процессы. Анаэробные дыхания. Доноры и акцепторы электронов, используемые разными микроорганизмами при анаэробном дыхании. Диссимиляционная нитратредукция и денитрификация. Сульфат- и серу-редукторы. Метаногены, их особенности. Ацетогены. Путь Вуда-Льюнгдала. Фототрофные прокариотные и эукариотные микроорганизмы. Состав, организация и функции их фотосинтезирующего аппарата. Фотосинтез с выделением и без выделения молекулярного кислорода. Использование световой энергии галоархеями. Биосинтетические процессы, ассимиляция углекислоты. Рибулозобисфосфатный цикл, ассимиляция формальдегида метилтрофами. Значение цикла трикарбоновых кислот и глиоксилатного шунта. Ассимиляционная нитратредукция, фиксация молекулярного азота. Свободноживущие и симбиотические азотфиксаторы. Пути ассимиляции аммония. Ассимиляционная сульфатредукция. Синтез основных биополимеров, биосинтез порфириновых соединений, вторичные метаболиты.

Биохимические основы и уровни регуляции метаболизма, регуляция синтеза ферментов. Индукция и репрессия. Регуляция активности ферментов, аллостерические ферменты и эффекторы, ковалентная модификация ферментов, аденилатный контроль и энергетический заряд клетки.

8. Наследственность  и изменчивость

Наследственная  и ненаследственная изменчивость, мутационная  природа изменчивости. Частота мутантов и типы мутаций. Спонтанный и индуцированный мутагенезы. Популяционная изменчивость, селекция различных мутантов. Применение мутантов микроорганизмов. Трансформация, трансдукция, конъюгация, рекомбинация и генетический анализ у фагов. Плазмиды, транспозоны, использование вирусов и плазмид в генетической инженерии. Рекомбинация у эукариот, половой и парасексуальный процессы, цитоплазматическая наследственность.

9. Микроорганизмы в  природе

Участие микроорганизмов  в биогеохимических циклах, взаимосвязь  циклов. Роль физиологических групп  микроорганизмов в катализе этапов циклов. Ведущая роль цикла углерода, продукция и деструкция в цикле  органического углерода, связь с  циклом неорганического углерода и  циклом кислорода. Цикл азота, группы организмов, участвующие в нем. Цикл серы: серобактерии и сульфидогены. Цикл железа. Самоочищение водотоков. Очистные сооружения и микробные сообщества в них. Морская микробиология. Сообщества микроорганизмов, трофические связи в сообществах. Анаэробное сообщество как модель трофических связей, межвидовой перенос водорода и формиата, синтрофия. Первичные анаэробы и вторичные анаэробы. Экология микроорганизмов, формирование состава атмосферы. Парниковые газы, метаногенез, бактериальный газовый фильтр. Водная микробиология, озеро как модель водной экосистемы. Циклы веществ в водоемах. Геологическая микробиология, роль микроорганизмов в выщелачивании пород и формировании коры выветривания. Цикл кальция и карбонатов, рудообразование. Почвенная микробиология, структура почвы и характерные условия обитания микроорганизмов в почве. Влажность и почвенный воздух, связь микроорганизмов с растениями, ризосфера. Роль мицелиальных организмов в почве, микориза, гумусообразование. Роль микроорганизмов в формировании характерных типов почв, самоочищение почвы. Палеобактериология и эволюция биосферы в докембрии, реликтовые сообщества. Филогения микроорганизмов, основанная на изучении последовательностей 16 S рРНК, симбиогенез.

10. Микроорганизмы в  хозяйственной деятельности  и медицине

Использование микроорганизмов  для получения пищевых и кормовых продуктов, химических реактивов и  лекарственных препаратов. Применение в сельском хозяйстве, при выщелачивании  металлов из руд, очистке стоков и  получении топлив.

Минеральные соединения азота не накапливаются  в почве в больших количествах, так как потребляются растениями, а также используются микроорганизмами и частично снова превращаются в  органическую форму. Азотные удобрения  усиливают минерализацию почвенного органического вещества и значительно  увеличивают усвоение растениями азота  из почвы. До недавнего времени считалось, что растения используют 70—80% азота  удобрений. Коэффициент использования  растениями азота удобрений определялся  разностным методом — по разнице  в выносе азота с урожаем при  внесении азота и без внесения, выраженный в % внесенного количества N удобрения. При этом допускалось, что растения в том и другом случае усваивают одинаковое количество азота из почвы. Применение в агрохимических исследованиях метода меченых атомов (в опытах использовали соединения азота, меченные стабильным изотопом азота 1SN) позволило установить, что в полевых условиях растения усваивают непосредственно из удобрений лишь 30—50% азота. Однако при внесении азотных удобрений усиливается минерализация почвенного азота и усвоение его растениями. Коэффициенты использования азота различных форм азотных удобрений существенно не различаются, за исключением экстремальных условий их применения. Показано также, что 10—20% азота нитратных и 30—40% аммиачных, аммонийных удобрений и мочевины закрепляется в почве в органической форме. Превращение азота в органическую форму резко возрастает при запашке в почву органического вещества с низким содержанием азота (пожнивные растительные остатки, солома злаковых и соломистый навоз). Закрепившийся азот медленно минерализуется и слабо усваивается растениями, поэтому последействие азотных удобрений незначительно.

Следовательно, одновременно с минерализацией органического  вещества в почве происходит закрепление  минеральных соединений азота вновь  в органическую форму. Но при этом азот не теряется, а лишь временно переходит  в недоступные растениям соединения. Соотношение процессов минерализации  и новообразования органических азотосодержащих веществ имеет  важное значение в азотном режиме почв.

Для закрепления нитратного азота в  почве особое значение, как уже  отмечалось, имеет биологическое  поглощение. Нитраты легко передвигаются  в почве и могут вымываться из корнеобитаемого слоя осадками и  дренажными водами. Вымывание нитратов из тяжелых почв под растениями обычно незначительно (в среднем 3—5 кг с 1 га). Однако на легких, особенно парующих, почвах в увлажненных районах, а также в условиях орошаемого земледелия такие потери могут достигать значительных величин (до 30—50 кг на 1 га и более).

Информация о работе Нитрификация. Возбудители. Химизм процесса. Значение работ С. Н. Виноградского. Положительная и отрицательная роль этого процесса в зем